Shortcuts

Source code for flash.core.data.data_module

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union

import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from torch.utils.data import DataLoader, Dataset
from torch.utils.data._utils.collate import default_collate
from torch.utils.data.dataset import IterableDataset
from torch.utils.data.sampler import Sampler

import flash
from flash.core.data.base_viz import BaseVisualization
from flash.core.data.callback import BaseDataFetcher
from flash.core.data.io.input import DataKeys, Input, InputBase, IterableInput
from flash.core.data.io.input_transform import (
    _create_collate_input_transform_processors,
    _InputTransformProcessorV2,
    create_transform,
    InputTransform,
)
from flash.core.data.io.output_transform import OutputTransform
from flash.core.data.splits import SplitDataset
from flash.core.data.utils import _STAGES_PREFIX
from flash.core.registry import FlashRegistry
from flash.core.utilities.stages import RunningStage


class DatasetInput(Input):
    """The ``DatasetInput`` implements default behaviours for data sources which expect the input to
    :meth:`~flash.core.data.io.input.Input.load_data` to be a :class:`torch.utils.data.dataset.Dataset`
    """

    def load_sample(self, sample: Any) -> Dict[str, Any]:
        if isinstance(sample, tuple) and len(sample) == 2:
            return {DataKeys.INPUT: sample[0], DataKeys.TARGET: sample[1]}
        return {DataKeys.INPUT: sample}


[docs]class DataModule(pl.LightningDataModule): """A basic DataModule class for all Flash tasks. This class includes references to a :class:`~flash.core.data.datasets.Input` and a :class:`~flash.core.data.callback.BaseDataFetcher`. Args: train_input: Input dataset for training. Defaults to None. val_input: Input dataset for validating model performance during training. Defaults to None. test_input: Input dataset to test model performance. Defaults to None. predict_input: Input dataset for predicting. Defaults to None. data_fetcher: The :class:`~flash.core.data.callback.BaseDataFetcher` to attach to the :class:`~flash.core.data.io.input_transform.InputTransform`. If ``None``, the output from :meth:`~flash.core.data.data_module.DataModule.configure_data_fetcher` will be used. val_split: An optional float which gives the relative amount of the training dataset to use for the validation dataset. batch_size: The batch size to be used by the DataLoader. num_workers: The number of workers to use for parallelized loading. sampler: A sampler following the :class:`~torch.utils.data.sampler.Sampler` type. Will be passed to the DataLoader for the training dataset. Defaults to None. Examples ________ .. testsetup:: >>> from flash import DataModule >>> from flash.core.utilities.stages import RunningStage >>> from torch.utils.data.sampler import SequentialSampler, WeightedRandomSampler >>> class TestInput(Input): ... def train_load_data(self, _): ... return [(0, 1, 2, 3), (0, 1, 2, 3)] >>> train_input = TestInput(RunningStage.TRAINING, [1]) You can provide the sampler to use for the train dataloader using the ``sampler`` argument. The sampler can be a function or type that needs the dataset as an argument: .. doctest:: >>> datamodule = DataModule(train_input, sampler=SequentialSampler, batch_size=1) >>> print(datamodule.train_dataloader().sampler) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <torch.utils.data.sampler.SequentialSampler object at ...> Alternatively, you can pass a sampler instance: .. doctest:: >>> datamodule = DataModule(train_input, sampler=WeightedRandomSampler([0.1, 0.5], 2), batch_size=1) >>> print(datamodule.train_dataloader().sampler) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <torch.utils.data.sampler.WeightedRandomSampler object at ...> """ input_transform_cls = InputTransform input_transforms_registry: Optional[FlashRegistry] = None def __init__( self, train_input: Optional[Input] = None, val_input: Optional[Input] = None, test_input: Optional[Input] = None, predict_input: Optional[Input] = None, data_fetcher: Optional[BaseDataFetcher] = None, val_split: Optional[float] = None, batch_size: Optional[int] = None, num_workers: int = 0, sampler: Optional[Union[Callable, Sampler, Type[Sampler]]] = None, pin_memory: bool = True, persistent_workers: bool = False, ) -> None: if not batch_size: raise MisconfigurationException("The `batch_size` should be provided to the DataModule on instantiation.") if flash._IS_TESTING and torch.cuda.is_available(): batch_size = 16 self._input_transform: Optional[OutputTransform] = None self._viz: Optional[BaseVisualization] = None self._train_input = train_input self._val_input = val_input self._test_input = test_input self._predict_input = predict_input if self._train_input and self._val_input and isinstance(val_split, float) and val_split > 0: raise MisconfigurationException( "A `val_dataset` was provided with `val_split`. Please, choose one or the other." ) if self._train_input and (val_split is not None and not self._val_input): self._train_input, self._val_input = self._split_train_val(self._train_input, val_split) self._data_fetcher: Optional[BaseDataFetcher] = data_fetcher or self.configure_data_fetcher() self._train_dataloader_collate_fn = self._resolve_dataloader_collate_fn(self._train_input) self._val_dataloader_collate_fn = self._resolve_dataloader_collate_fn(self._val_input) self._test_dataloader_collate_fn = self._resolve_dataloader_collate_fn(self._test_input) self._predict_dataloader_collate_fn = self._resolve_dataloader_collate_fn(self._predict_input) self._on_after_batch_transfer_fns = { RunningStage.TRAINING: self._resolve_on_after_batch_transfer_fn(self._train_input), RunningStage.VALIDATING: self._resolve_on_after_batch_transfer_fn(self._val_input), RunningStage.SANITY_CHECKING: self._resolve_on_after_batch_transfer_fn(self._val_input), RunningStage.TESTING: self._resolve_on_after_batch_transfer_fn(self._test_input), RunningStage.PREDICTING: self._resolve_on_after_batch_transfer_fn(self._predict_input), } self._model_on_after_batch_transfer_fns = None if self._train_input: self.train_dataloader = self._train_dataloader if self._val_input: self.val_dataloader = self._val_dataloader if self._test_input: self.test_dataloader = self._test_dataloader if self._predict_input: self.predict_dataloader = self._predict_dataloader self.batch_size = batch_size self.num_workers = num_workers self.persistent_workers = persistent_workers and num_workers > 0 self.pin_memory = pin_memory self.sampler = sampler super().__init__() @property def train_dataset(self) -> Optional[Input]: """This property returns the train dataset.""" return self._train_input @property def val_dataset(self) -> Optional[Input]: """This property returns the validation dataset.""" return self._val_input @property def test_dataset(self) -> Optional[Input]: """This property returns the test dataset.""" return self._test_input @property def predict_dataset(self) -> Optional[Input]: """This property returns the predict dataset.""" return self._predict_input def _resolve_dataloader_collate_fn(self, ds: Optional[Input]) -> Optional[Callable]: if not ds: return None if isinstance(ds.transform, InputTransform): return ds._create_dataloader_collate_fn([self.data_fetcher]) return default_collate def _resolve_on_after_batch_transfer_fn(self, ds: Optional[Input]) -> Optional[Callable]: if not ds: return None if isinstance(ds.transform, InputTransform): return ds._create_on_after_batch_transfer_fn([self.data_fetcher]) def _train_dataloader(self) -> DataLoader: train_ds: Input = self._train_input collate_fn = self._train_dataloader_collate_fn if isinstance(getattr(self, "trainer", None), pl.Trainer): input_transform = getattr(self.trainer.lightning_module, "input_transform", None) if input_transform is not None: input_transform = create_transform(input_transform, RunningStage.TRAINING) collate_fn = _create_collate_input_transform_processors(input_transform, [self.data_fetcher])[0] transform_processor = None if isinstance(collate_fn, _InputTransformProcessorV2): transform_processor = collate_fn collate_fn = transform_processor.collate_fn shuffle: bool = False if isinstance(train_ds, IterableDataset): drop_last = False else: drop_last = len(train_ds) > self.batch_size if self.sampler is None: sampler = None shuffle = not isinstance(train_ds, IterableDataset) elif callable(self.sampler): sampler = self.sampler(train_ds) else: sampler = self.sampler if isinstance(getattr(self, "trainer", None), pl.Trainer): dataloader = self.trainer.lightning_module.process_train_dataset( train_ds, trainer=self.trainer, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, sampler=sampler, persistent_workers=self.persistent_workers, ) else: dataloader = DataLoader( train_ds, batch_size=self.batch_size, shuffle=shuffle, sampler=sampler, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=drop_last, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) if transform_processor is not None: transform_processor.collate_fn = dataloader.collate_fn dataloader.collate_fn = transform_processor self._model_on_after_batch_transfer_fns = None return dataloader def _val_dataloader(self) -> DataLoader: val_ds: Input = self._val_input collate_fn = self._val_dataloader_collate_fn if isinstance(getattr(self, "trainer", None), pl.Trainer): input_transform = getattr(self.trainer.lightning_module, "input_transform", None) if input_transform is not None: input_transform = create_transform(input_transform, RunningStage.VALIDATING) collate_fn = _create_collate_input_transform_processors(input_transform, [self.data_fetcher])[0] transform_processor = None if isinstance(collate_fn, _InputTransformProcessorV2): transform_processor = collate_fn collate_fn = transform_processor.collate_fn if isinstance(getattr(self, "trainer", None), pl.Trainer): dataloader = self.trainer.lightning_module.process_val_dataset( val_ds, trainer=self.trainer, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) else: dataloader = DataLoader( val_ds, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) if transform_processor is not None: transform_processor.collate_fn = dataloader.collate_fn dataloader.collate_fn = transform_processor self._model_on_after_batch_transfer_fns = None return dataloader def _test_dataloader(self) -> DataLoader: test_ds: Input = self._test_input collate_fn = self._test_dataloader_collate_fn if isinstance(getattr(self, "trainer", None), pl.Trainer): input_transform = getattr(self.trainer.lightning_module, "input_transform", None) if input_transform is not None: input_transform = create_transform(input_transform, RunningStage.TESTING) collate_fn = _create_collate_input_transform_processors(input_transform, [self.data_fetcher])[0] transform_processor = None if isinstance(collate_fn, _InputTransformProcessorV2): transform_processor = collate_fn collate_fn = transform_processor.collate_fn if isinstance(getattr(self, "trainer", None), pl.Trainer): dataloader = self.trainer.lightning_module.process_test_dataset( test_ds, trainer=self.trainer, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) else: dataloader = DataLoader( test_ds, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) if transform_processor is not None: transform_processor.collate_fn = dataloader.collate_fn dataloader.collate_fn = transform_processor self._model_on_after_batch_transfer_fns = None return dataloader def _predict_dataloader(self) -> DataLoader: predict_ds: Input = self._predict_input collate_fn = self._predict_dataloader_collate_fn if isinstance(getattr(self, "trainer", None), pl.Trainer): input_transform = getattr(self.trainer.lightning_module, "input_transform", None) if input_transform is not None: input_transform = create_transform(input_transform, RunningStage.PREDICTING) collate_fn = _create_collate_input_transform_processors(input_transform, [self.data_fetcher])[0] transform_processor = None if isinstance(collate_fn, _InputTransformProcessorV2): transform_processor = collate_fn collate_fn = transform_processor.collate_fn if isinstance(predict_ds, IterableDataset): batch_size = self.batch_size else: batch_size = min(self.batch_size, len(predict_ds) if len(predict_ds) > 0 else 1) if isinstance(getattr(self, "trainer", None), pl.Trainer): dataloader = self.trainer.lightning_module.process_predict_dataset( predict_ds, batch_size=batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) else: dataloader = DataLoader( predict_ds, batch_size=batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, collate_fn=collate_fn, persistent_workers=self.persistent_workers, ) if transform_processor is not None: transform_processor.collate_fn = dataloader.collate_fn dataloader.collate_fn = transform_processor self._model_on_after_batch_transfer_fns = None return dataloader def _load_model_on_after_batch_transfer_fns(self) -> None: self._model_on_after_batch_transfer_fns = {} for stage in [ RunningStage.TRAINING, RunningStage.VALIDATING, RunningStage.SANITY_CHECKING, RunningStage.TESTING, RunningStage.PREDICTING, ]: transform = None if isinstance(getattr(self, "trainer", None), pl.Trainer): input_transform = getattr(self.trainer.lightning_module, "input_transform", None) if input_transform is not None: input_transform = create_transform( input_transform, stage if stage != RunningStage.SANITY_CHECKING else RunningStage.VALIDATING ) transform = _create_collate_input_transform_processors(input_transform, [self.data_fetcher])[1] self._model_on_after_batch_transfer_fns[stage] = transform def on_after_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any: if getattr(self, "trainer", None) is None: return batch if self._model_on_after_batch_transfer_fns is None: self._load_model_on_after_batch_transfer_fns() stage = self.trainer.state.stage transform = self._model_on_after_batch_transfer_fns[stage] if transform is None: transform = self._on_after_batch_transfer_fns[stage] if transform: batch = transform(batch) return batch @property def viz(self) -> BaseVisualization: return self._viz or DataModule.configure_data_fetcher() @viz.setter def viz(self, viz: BaseVisualization) -> None: self._viz = viz
[docs] @staticmethod def configure_data_fetcher(*args, **kwargs) -> BaseDataFetcher: """This function is used to configure a :class:`~flash.core.data.callback.BaseDataFetcher`. Override with your custom one. """ return BaseDataFetcher()
@property def data_fetcher(self) -> BaseDataFetcher: """This property returns the data fetcher.""" return self._data_fetcher or DataModule.configure_data_fetcher() @data_fetcher.setter def data_fetcher(self, data_fetcher: BaseDataFetcher) -> None: self._data_fetcher = data_fetcher def _reset_iterator(self, stage: str) -> Iterable[Any]: iter_name = f"_{stage}_iter" # num_workers has to be set to 0 to work properly num_workers = self.num_workers self.num_workers = 0 dataloader_fn = getattr(self, f"{stage}_dataloader") iterator = iter(dataloader_fn()) self.num_workers = num_workers setattr(self, iter_name, iterator) return iterator def _show_batch(self, stage: str, func_names: Union[str, List[str]], reset: bool = True) -> None: """This function is used to handle transforms profiling for batch visualization.""" # don't show in CI if os.getenv("FLASH_TESTING", "0") == "1": return None iter_name = f"_{stage}_iter" if not hasattr(self, iter_name): self._reset_iterator(stage) # list of functions to visualise if isinstance(func_names, str): func_names = [func_names] iter_dataloader = getattr(self, iter_name) with self.data_fetcher.enable(): if reset: self.data_fetcher.batches[stage] = {} try: _ = next(iter_dataloader) except StopIteration: iter_dataloader = self._reset_iterator(stage) _ = next(iter_dataloader) data_fetcher: BaseVisualization = self.data_fetcher data_fetcher._show(stage, func_names) if reset: self.data_fetcher.batches[stage] = {}
[docs] def show_train_batch(self, hooks_names: Union[str, List[str]] = "load_sample", reset: bool = True) -> None: """This function is used to visualize a batch from the train dataloader.""" stage_name: str = _STAGES_PREFIX[RunningStage.TRAINING] self._show_batch(stage_name, hooks_names, reset=reset)
[docs] def show_val_batch(self, hooks_names: Union[str, List[str]] = "load_sample", reset: bool = True) -> None: """This function is used to visualize a batch from the validation dataloader.""" stage_name: str = _STAGES_PREFIX[RunningStage.VALIDATING] self._show_batch(stage_name, hooks_names, reset=reset)
[docs] def show_test_batch(self, hooks_names: Union[str, List[str]] = "load_sample", reset: bool = True) -> None: """This function is used to visualize a batch from the test dataloader.""" stage_name: str = _STAGES_PREFIX[RunningStage.TESTING] self._show_batch(stage_name, hooks_names, reset=reset)
[docs] def show_predict_batch(self, hooks_names: Union[str, List[str]] = "load_sample", reset: bool = True) -> None: """This function is used to visualize a batch from the predict dataloader.""" stage_name: str = _STAGES_PREFIX[RunningStage.PREDICTING] self._show_batch(stage_name, hooks_names, reset=reset)
def _get_property(self, property_name: str) -> Optional[Any]: train = getattr(self.train_dataset, property_name, None) val = getattr(self.val_dataset, property_name, None) test = getattr(self.test_dataset, property_name, None) filtered = list(filter(lambda x: x is not None, [train, val, test])) return filtered[0] if len(filtered) > 0 else None @property def num_classes(self) -> Optional[int]: """Property that returns the number of classes of the datamodule if a multiclass task.""" return self._get_property("num_classes") @property def labels(self) -> Optional[int]: """Property that returns the labels if this ``DataModule`` contains classification data.""" return self._get_property("labels") @property def multi_label(self) -> Optional[bool]: """Property that returns ``True`` if this ``DataModule`` contains multi-label data.""" return self._get_property("multi_label") @property def inputs(self) -> Optional[Union[Input, List[InputBase]]]: """Property that returns the inputs associated with this ``DataModule``.""" inputs = [self.train_dataset, self.val_dataset, self.test_dataset, self.predict_dataset] return [input for input in inputs if input] @staticmethod def _split_train_val( train_dataset: Dataset, val_split: float, ) -> Tuple[Any, Any]: """Utility function for splitting the training dataset into a disjoint subset of training samples and validation samples. Args: train_dataset: A instance of a :class:`torch.utils.data.Dataset`. val_split: A float between 0 and 1 determining the number fraction of samples that should go into the validation split Returns: A tuple containing the training and validation datasets """ if not isinstance(val_split, float) or (isinstance(val_split, float) and val_split > 1 or val_split < 0): raise MisconfigurationException(f"`val_split` should be a float between 0 and 1. Found {val_split}.") if isinstance(train_dataset, IterableInput): raise MisconfigurationException( "`val_split` should be `None` when the dataset is built with an IterableDataset." ) val_num_samples = int(len(train_dataset) * val_split) indices = list(range(len(train_dataset))) np.random.shuffle(indices) val_indices = indices[:val_num_samples] train_indices = indices[val_num_samples:] return ( SplitDataset(train_dataset, train_indices, use_duplicated_indices=True), SplitDataset(train_dataset, val_indices, use_duplicated_indices=True), )

© Copyright 2020-2021, PyTorch Lightning. Revision 8e9123c7.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: 0.7.1
Versions
latest
stable
0.7.1
0.7.0
0.6.0
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
docs-fix_typing
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.