Source code for flash.audio.speech_recognition.model
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
from typing import Any, Dict, Optional, Type, Union
import torch.nn as nn
from torch import Tensor
from flash.audio.speech_recognition.backbone import SPEECH_RECOGNITION_BACKBONES
from flash.audio.speech_recognition.collate import DataCollatorCTCWithPadding
from flash.audio.speech_recognition.input import SpeechRecognitionDeserializer
from flash.audio.speech_recognition.output_transform import SpeechRecognitionOutputTransform
from flash.core.data.io.input import ServeInput
from flash.core.data.io.input_transform import InputTransform
from flash.core.data.io.output import Output
from flash.core.model import Task
from flash.core.registry import FlashRegistry
from flash.core.serve import Composition
from flash.core.utilities.imports import _TOPIC_AUDIO_AVAILABLE, requires
from flash.core.utilities.types import INPUT_TRANSFORM_TYPE, LR_SCHEDULER_TYPE, OPTIMIZER_TYPE
if _TOPIC_AUDIO_AVAILABLE:
from transformers import AutoProcessor
[docs]class SpeechRecognition(Task):
"""The ``SpeechRecognition`` task is a :class:`~flash.Task` for converting speech to text. For more details, see
:ref:`speech_recognition`.
Args:
backbone: Any speech recognition model from `HuggingFace/transformers
<https://huggingface.co/models?pipeline_tag=automatic-speech-recognition>`_.
learning_rate: Learning rate to use for training, defaults to ``1e-5``.
optimizer: Optimizer to use for training.
lr_scheduler: The LR scheduler to use during training.
"""
backbones: FlashRegistry = SPEECH_RECOGNITION_BACKBONES
required_extras = "audio"
def __init__(
self,
backbone: str = "facebook/wav2vec2-base-960h",
processor_backbone: str = None,
optimizer: OPTIMIZER_TYPE = "Adam",
lr_scheduler: LR_SCHEDULER_TYPE = None,
learning_rate: Optional[float] = None,
):
os.environ["TOKENIZERS_PARALLELISM"] = "TRUE"
# disable HF thousand warnings
warnings.simplefilter("ignore")
# set os environ variable for multiprocesses
os.environ["PYTHONWARNINGS"] = "ignore"
model = self.backbones.get(backbone)()
super().__init__(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
learning_rate=learning_rate,
output_transform=SpeechRecognitionOutputTransform(backbone)
if processor_backbone is None
else SpeechRecognitionOutputTransform(processor_backbone),
)
self.save_hyperparameters()
self.collate_fn = DataCollatorCTCWithPadding(
AutoProcessor.from_pretrained(backbone)
if processor_backbone is None
else AutoProcessor.from_pretrained(processor_backbone)
)
def modules_to_freeze(self) -> Optional[nn.Module]:
return self.model.base_model
def forward(self, batch: Dict[str, Tensor]):
return self.model(batch["input_values"]).logits
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
return self(batch)
def step(self, batch: Any, batch_idx: int, metrics: nn.ModuleDict) -> Any:
out = self.model(batch["input_values"], labels=batch["labels"])
out["logs"] = {"loss": out.loss}
return out
@requires("serve")
def serve(
self,
host: str = "127.0.0.1",
port: int = 8000,
sanity_check: bool = True,
input_cls: Optional[Type[ServeInput]] = SpeechRecognitionDeserializer,
transform: INPUT_TRANSFORM_TYPE = InputTransform,
transform_kwargs: Optional[Dict] = None,
output: Optional[Union[str, Output]] = None,
) -> Composition:
return super().serve(host, port, sanity_check, input_cls, transform, transform_kwargs, output)