Shortcuts

Source code for flash.image.data

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
from io import BytesIO
from pathlib import Path
from typing import Any, Dict, List

import torch

import flash
from flash.core.data.io.input import DataKeys, Input, ServeInput
from flash.core.data.utilities.loading import IMG_EXTENSIONS, load_image, NP_EXTENSIONS
from flash.core.data.utilities.paths import filter_valid_files, PATH_TYPE
from flash.core.data.utilities.samples import to_samples
from flash.core.utilities.imports import _TORCHVISION_AVAILABLE, Image, requires

if _TORCHVISION_AVAILABLE:
    from torchvision.transforms.functional import to_pil_image


[docs]class ImageDeserializer(ServeInput): @requires("image") def serve_load_sample(self, data: str) -> Dict: encoded_with_padding = (data + "===").encode("ascii") img = base64.b64decode(encoded_with_padding) buffer = BytesIO(img) img = Image.open(buffer, mode="r") w, h = img.size return { DataKeys.INPUT: img, DataKeys.METADATA: { "size": (h, w), }, } @property def example_input(self) -> str: with (Path(flash.ASSETS_ROOT) / "fish.jpg").open("rb") as f: return base64.b64encode(f.read()).decode("UTF-8")
class ImageInput(Input): @requires("image") def load_sample(self, sample: Dict[str, Any]) -> Dict[str, Any]: w, h = sample[DataKeys.INPUT].size # W x H if DataKeys.METADATA not in sample: sample[DataKeys.METADATA] = {} sample[DataKeys.METADATA].update( { "size": (h, w), "height": h, "width": w, } ) return sample class ImageFilesInput(ImageInput): def load_data(self, files: List[PATH_TYPE]) -> List[Dict[str, Any]]: files = filter_valid_files(files, valid_extensions=IMG_EXTENSIONS + NP_EXTENSIONS) return to_samples(files) def load_sample(self, sample: Dict[str, Any]) -> Dict[str, Any]: filepath = sample[DataKeys.INPUT] sample[DataKeys.INPUT] = load_image(filepath) sample = super().load_sample(sample) sample[DataKeys.METADATA]["filepath"] = filepath return sample
[docs]class ImageTensorInput(ImageInput): def load_data(self, tensor: Any) -> List[Dict[str, Any]]: return to_samples(tensor) def load_sample(self, sample: Dict[str, Any]) -> Dict[str, Any]: img = to_pil_image(sample[DataKeys.INPUT]) sample[DataKeys.INPUT] = img return super().load_sample(sample)
[docs]class ImageNumpyInput(ImageInput): def load_data(self, array: Any) -> List[Dict[str, Any]]: return to_samples(array) def load_sample(self, sample: Dict[str, Any]) -> Dict[str, Any]: img = to_pil_image(torch.from_numpy(sample[DataKeys.INPUT])) sample[DataKeys.INPUT] = img return super().load_sample(sample)

© Copyright 2020-2021, PyTorch Lightning. Revision da42a635.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
0.8.0
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.