Shortcuts

Source code for flash.tabular.forecasting.input

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import copy
from typing import Any, Dict, List, Optional, Tuple, Union

from pytorch_lightning.utilities.exceptions import MisconfigurationException

from flash.core.data.io.input import DataKeys, Input
from flash.core.utilities.imports import _FORECASTING_AVAILABLE, _PANDAS_AVAILABLE, requires

if _PANDAS_AVAILABLE:
    from pandas.core.frame import DataFrame
else:
    DataFrame = object

if _FORECASTING_AVAILABLE:
    from pytorch_forecasting import TimeSeriesDataSet


[docs]class TabularForecastingDataFrameInput(Input): @requires("tabular") def load_data( self, data: DataFrame, time_idx: Optional[str] = None, target: Optional[Union[str, List[str]]] = None, group_ids: Optional[List[str]] = None, parameters: Optional[Dict[str, Any]] = None, **time_series_dataset_kwargs: Any, ): if self.training: time_series_dataset = TimeSeriesDataSet( data, time_idx=time_idx, group_ids=group_ids, target=target, **time_series_dataset_kwargs ) parameters = time_series_dataset.get_parameters() # Add some sample data so that we can recreate the `TimeSeriesDataSet` later on parameters["data_sample"] = data.iloc[[0]].to_dict() self.parameters = parameters else: if parameters is None: raise MisconfigurationException( "Loading data for evaluation or inference requires parameters from the train data. Either " "construct the train data at the same time as evaluation and inference or provide the train " "`datamodule.parameters` to `from_data_frame` in the `parameters` argument." ) parameters = copy(parameters) parameters.pop("data_sample") time_series_dataset = TimeSeriesDataSet.from_parameters( parameters, data, stop_randomization=True, ) return time_series_dataset def load_sample(self, sample: Tuple) -> Any: return {DataKeys.INPUT: sample[0], DataKeys.TARGET: sample[1]}

© Copyright 2020-2021, PyTorch Lightning. Revision da42a635.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
0.8.0
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.