Shortcuts

Point Cloud Segmentation

The Task

A Point Cloud is a set of data points in space, usually describes by x, y and z coordinates.

PointCloud Segmentation is the task of performing classification at a point-level, meaning each point will associated to a given class. The current integration builds on top Open3D-ML.


Example

Let’s look at an example using a data set generated from the KITTI Vision Benchmark. The data are a tiny subset of the original dataset and contains sequences of point clouds. The data contains multiple folder, one for each sequence and a meta.yaml file describing the classes and their official associated color map. A sequence should contain one folder for scans and one folder for labels, plus a pose.txt to re-align the sequence if required. Here’s the structure:

data
├── meta.yaml
├── 00
│   ├── scans
|   |    ├── 00000.bin
|   |    ├── 00001.bin
|   |    ...
│   ├── labels
|   |    ├── 00000.label
|   |    ├── 00001.label
|   |   ...
|   ├── pose.txt
│   ...
|
└── XX
   ├── scans
   |    ├── 00000.bin
   |    ├── 00001.bin
   |    ...
   ├── labels
   |    ├── 00000.label
   |    ├── 00001.label
   |   ...
   ├── pose.txt

Learn more: http://www.semantic-kitti.org/dataset.html

Once we’ve downloaded the data using download_data(), we create the PointCloudSegmentationData. We select a pre-trained randlanet_semantic_kitti backbone for our PointCloudSegmentation task. We then use the trained PointCloudSegmentation for inference. Finally, we save the model. Here’s the full example:

import torch

import flash
from flash.core.data.utils import download_data
from flash.pointcloud import PointCloudSegmentation, PointCloudSegmentationData

# 1. Create the DataModule
# Dataset Credit: http://www.semantic-kitti.org/
download_data("https://pl-flash-data.s3.amazonaws.com/SemanticKittiTiny.zip", "data/")

datamodule = PointCloudSegmentationData.from_folders(
    train_folder="data/SemanticKittiTiny/train",
    val_folder="data/SemanticKittiTiny/val",
)

# 2. Build the task
model = PointCloudSegmentation(backbone="randlanet_semantic_kitti", num_classes=datamodule.num_classes)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(
    max_epochs=1, limit_train_batches=1, limit_val_batches=1, num_sanity_val_steps=0, gpus=torch.cuda.device_count()
)
trainer.fit(model, datamodule)

# 4. Predict what's within a few PointClouds?
predictions = model.predict(
    [
        "data/SemanticKittiTiny/predict/000000.bin",
        "data/SemanticKittiTiny/predict/000001.bin",
    ]
)

# 5. Save the model!
trainer.save_checkpoint("pointcloud_segmentation_model.pt")
https://raw.githubusercontent.com/intel-isl/Open3D-ML/master/docs/images/getting_started_ml_visualizer.gif

Flash Zero

The point cloud segmentation task can be used directly from the command line with zero code using Flash Zero. You can run the above example with:

flash pointcloud_segmentation

To view configuration options and options for running the point cloud segmentation task with your own data, use:

flash pointcloud_segmentation --help
Read the Docs v: latest
Versions
latest
stable
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.