Shortcuts

The Example

Now you’ve implemented your task, it’s time to add an example showing how cool it is! We usually provide one example in flash_examples/. You can base these off of our template.py examples.

The example should:

  1. download the data (we’ll add the example to our CI later on, so choose a dataset small enough that it runs in reasonable time)

  2. load the data into a DataModule

  3. create an instance of the Task

  4. create a Trainer

  5. call finetune() or fit() to train your model

  6. generate predictions for a few examples

  7. save the checkpoint

For our template example we don’t have a pretrained backbone, so we can just call fit() rather than finetune(). Here’s the full example (flash_examples/template.py):

import numpy as np
import torch
from sklearn import datasets

import flash
from flash.template import TemplateData, TemplateSKLearnClassifier

# 1. Create the DataModule
datamodule = TemplateData.from_sklearn(
    train_bunch=datasets.load_iris(),
    val_split=0.1,
)

# 2. Build the task
model = TemplateSKLearnClassifier(num_features=datamodule.num_features, num_classes=datamodule.num_classes)

# 3. Create the trainer and train the model
trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count())
trainer.fit(model, datamodule=datamodule)

# 4. Classify a few examples
predictions = model.predict(
    [
        np.array([4.9, 3.0, 1.4, 0.2]),
        np.array([6.9, 3.2, 5.7, 2.3]),
        np.array([7.2, 3.0, 5.8, 1.6]),
    ]
)
print(predictions)

# 5. Save the model!
trainer.save_checkpoint("template_model.pt")

We get this output:

['setosa', 'virginica', 'versicolor']

Now that you’ve got an example showing your awesome task in action, it’s time to write some tests!

Read the Docs v: latest
Versions
latest
stable
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.