Shortcuts

DataModule

class flash.core.data.data_module.DataModule(train_input=None, val_input=None, test_input=None, predict_input=None, data_fetcher=None, transform=<class 'flash.core.data.io.input_transform.InputTransform'>, transform_kwargs=None, val_split=None, batch_size=None, num_workers=0, sampler=None, pin_memory=True, persistent_workers=False)[source]

A basic DataModule class for all Flash tasks. This class includes references to a Input and a BaseDataFetcher.

Parameters

Examples

You can provide the sampler to use for the train dataloader using the sampler argument. The sampler can be a function or type that needs the dataset as an argument:

>>> datamodule = DataModule(train_input, sampler=SequentialSampler, batch_size=1)
>>> print(datamodule.train_dataloader().sampler)  
<torch.utils.data.sampler.SequentialSampler object at ...>

Alternatively, you can pass a sampler instance:

>>> datamodule = DataModule(train_input, sampler=WeightedRandomSampler([0.1, 0.5], 2), batch_size=1)
>>> print(datamodule.train_dataloader().sampler)  
<torch.utils.data.sampler.WeightedRandomSampler object at ...>
static configure_data_fetcher(*args, **kwargs)[source]

This function is used to configure a BaseDataFetcher.

Override with your custom one.

Return type

BaseDataFetcher

property data_fetcher: flash.core.data.callback.BaseDataFetcher

This property returns the data fetcher.

Return type

BaseDataFetcher

property input_transform: flash.core.data.io.input_transform.InputTransform

This property returns the data fetcher.

Return type

InputTransform

input_transform_cls

alias of flash.core.data.io.input_transform.InputTransform

property labels: Optional[int]

Property that returns the labels if this DataModule contains classification data.

Return type

Optional[int]

property multi_label: Optional[bool]

Property that returns True if this DataModule contains multi-label data.

Return type

Optional[bool]

property num_classes: Optional[int]

Property that returns the number of classes of the datamodule if a multiclass task.

Return type

Optional[int]

property predict_dataset: Optional[flash.core.data.io.input.Input]

This property returns the prediction dataset.

Return type

Optional[Input]

show_predict_batch(hooks_names='load_sample', reset=True)[source]

This function is used to visualize a batch from the prediction dataloader.

Return type

None

show_test_batch(hooks_names='load_sample', reset=True)[source]

This function is used to visualize a batch from the test dataloader.

Return type

None

show_train_batch(hooks_names='load_sample', reset=True)[source]

This function is used to visualize a batch from the train dataloader.

Return type

None

show_val_batch(hooks_names='load_sample', reset=True)[source]

This function is used to visualize a batch from the validation dataloader.

Return type

None

property test_dataset: Optional[flash.core.data.io.input.Input]

This property returns the test dataset.

Return type

Optional[Input]

property train_dataset: Optional[flash.core.data.io.input.Input]

This property returns the train dataset.

Return type

Optional[Input]

property val_dataset: Optional[flash.core.data.io.input.Input]

This property returns the validation dataset.

Return type

Optional[Input]

Read the Docs v: latest
Versions
latest
stable
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
docs-fix_typing
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.