Shortcuts

ImageEmbedder

class flash.image.embedding.model.ImageEmbedder(training_strategy='default', head=None, pretraining_transform=None, backbone='resnet18', pretrained=False, optimizer='Adam', lr_scheduler=None, learning_rate=None, backbone_kwargs=None, training_strategy_kwargs=None, pretraining_transform_kwargs=None)[source]

The ImageEmbedder is a Task for obtaining feature vectors (embeddings) from images. For more details, see Image Embedder.

Parameters
  • training_strategy (str) – Training strategy from VISSL, select between ‘simclr’, ‘swav’, or ‘barlow_twins’.

  • head (Optional[str]) – projection head used for task, select between ‘simclr_head’, ‘swav_head’, or ‘barlow_twins_head’.

  • pretraining_transform (Optional[str]) – transform applied to input image for pre-training SSL model. Select between ‘simclr_transform’, ‘swav_transform’, or ‘barlow_twins_transform’.

  • backbone (str) – VISSL backbone, defaults to resnet.

  • pretrained (bool) – Use a pretrained backbone, defaults to False.

  • optimizer (TypeVar(OPTIMIZER_TYPE, str, Callable, Tuple[str, Dict[str, Any]], None)) – Optimizer to use for training.

  • lr_scheduler (Optional[TypeVar(LR_SCHEDULER_TYPE, str, Callable, Tuple[str, Dict[str, Any]], Tuple[str, Dict[str, Any], Dict[str, Any]], None)]) – The LR scheduler to use during training.

  • learning_rate (Optional[float]) – Learning rate to use for training, defaults to 1e-3.

  • backbone_kwargs (Optional[Dict[str, Any]]) – arguments to be passed to VISSL backbones, i.e. vision_transformer and resnet.

  • training_strategy_kwargs (Optional[Dict[str, Any]]) – arguments passed to VISSL loss function, projection head and training hooks.

  • pretraining_transform_kwargs (Optional[Dict[str, Any]]) – arguments passed to VISSL transforms.

classmethod available_finetuning_strategies(cls)

Returns a list containing the keys of the available Finetuning Strategies.

Return type

List[str]

classmethod available_lr_schedulers(cls)

Returns a list containing the keys of the available LR schedulers.

Return type

List[str]

classmethod available_optimizers(cls)

Returns a list containing the keys of the available Optimizers.

Return type

List[str]

classmethod available_outputs(cls)

Returns the list of available outputs (that can be used during prediction or serving) for this Task.

Examples

..testsetup:

>>> from flash import Task
>>> print(Task.available_outputs())
['preds', 'raw']
Return type

List[str]

classmethod available_training_strategies(cls)[source]

Get the list of available training strategies (passed to the training_strategy argument) for this task.

Examples

>>> from flash.image import ImageEmbedder
>>> ImageEmbedder.available_training_strategies()  
['barlow_twins', ..., 'swav']
Return type

List[str]

Read the Docs v: stable
Versions
latest
stable
0.8.1
0.8.0
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.