Shortcuts

SemanticSegmentation

class flash.image.segmentation.model.SemanticSegmentation(num_classes, backbone='resnet50', backbone_kwargs=None, head='fpn', head_kwargs=None, pretrained=True, loss_fn=None, optimizer='Adam', lr_scheduler=None, metrics=None, learning_rate=None, multi_label=False, output_transform=None)[source]

SemanticSegmentation is a Task for semantic segmentation of images. For more details, see Semantic Segmentation.

Parameters
  • num_classes (int) – Number of classes to classify.

  • backbone (Union[str, Module]) – A string or model to use to compute image features.

  • backbone_kwargs (Optional[Dict]) – Additional arguments for the backbone configuration.

  • head (str) – A string or (model, num_features) tuple to use to compute image features.

  • head_kwargs (Optional[Dict]) – Additional arguments for the head configuration.

  • pretrained (Union[bool, str]) – Use a pretrained backbone.

  • loss_fn (Optional[TypeVar(LOSS_FN_TYPE, Callable, Mapping, Sequence, None)]) – Loss function for training.

  • optimizer (TypeVar(OPTIMIZER_TYPE, str, Callable, Tuple[str, Dict[str, Any]], None)) – Optimizer to use for training.

  • lr_scheduler (Optional[TypeVar(LR_SCHEDULER_TYPE, str, Callable, Tuple[str, Dict[str, Any]], Tuple[str, Dict[str, Any], Dict[str, Any]], None)]) – The LR scheduler to use during training.

  • metrics (Optional[TypeVar(METRICS_TYPE, Metric, Mapping, Sequence, None)]) – Metrics to compute for training and evaluation. Can either be an metric from the torchmetrics package, a custom metric inherenting from torchmetrics.Metric, a callable function or a list/dict containing a combination of the aforementioned. In all cases, each metric needs to have the signature metric(preds,target) and return a single scalar tensor. Defaults to torchmetrics.IOU.

  • learning_rate (Optional[float]) – Learning rate to use for training. If None (the default) then the default LR for your chosen optimizer will be used.

  • multi_label (bool) – Whether the targets are multi-label or not.

  • output – The Output to use when formatting prediction outputs.

  • output_transform (Optional[TypeVar(OUTPUT_TRANSFORM_TYPE, flash.core.data.io.output_transform.OutputTransform, None)]) – OutputTransform use for post processing samples.

classmethod available_finetuning_strategies(cls)

Returns a list containing the keys of the available Finetuning Strategies.

Return type

List[str]

classmethod available_lr_schedulers(cls)

Returns a list containing the keys of the available LR schedulers.

Return type

List[str]

classmethod available_optimizers(cls)

Returns a list containing the keys of the available Optimizers.

Return type

List[str]

classmethod available_outputs(cls)

Returns the list of available outputs (that can be used during prediction or serving) for this Task.

Examples

..testsetup:

>>> from flash import Task
>>> print(Task.available_outputs())
['preds', 'raw']
Return type

List[str]

Read the Docs v: stable
Versions
latest
stable
0.8.1
0.8.0
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.2
0.5.1
0.5.0
0.4.0
0.3.2
0.3.1
0.3.0
0.2.3
0.2.2
0.2.1
0.2.0
0.1.0post1
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.