ImageClassificationData¶
- class flash.image.classification.data.ImageClassificationData(train_input=None, val_input=None, test_input=None, predict_input=None, data_fetcher=None, transform=<class 'flash.core.data.io.input_transform.InputTransform'>, transform_kwargs=None, val_split=None, batch_size=None, num_workers=0, sampler=None, pin_memory=True, persistent_workers=False)[source]¶
The
ImageClassificationData
class is aDataModule
with a set of classmethods for loading data for image classification.- classmethod from_csv(input_field, target_fields=None, train_file=None, train_images_root=None, train_resolver=None, val_file=None, val_images_root=None, val_resolver=None, test_file=None, test_images_root=None, test_resolver=None, predict_file=None, predict_images_root=None, predict_resolver=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationCSVInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from CSV files containing image file paths and their corresponding targets.Input images will be extracted from the
input_field
column in the CSV files. The supported file extensions are:.jpg
,.jpeg
,.png
,.ppm
,.bmp
,.pgm
,.tif
,.tiff
,.webp
, and.npy
. The targets will be extracted from thetarget_fields
in the CSV files and can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.- Parameters
input_field¶ (
str
) – The field (column name) in the CSV files containing the image file paths.target_fields¶ (
Union
[str
,List
[str
],None
]) – The field (column name) or list of fields in the CSV files containing the targets.train_file¶ (
Union
[str
,bytes
,PathLike
,None
]) – The CSV file to use when training.train_images_root¶ (
Union
[str
,bytes
,PathLike
,None
]) – The root directory containing train images.train_resolver¶ (
Optional
[Callable
[[Union
[str
,bytes
,PathLike
],Any
],Union
[str
,bytes
,PathLike
]]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.val_file¶ (
Union
[str
,bytes
,PathLike
,None
]) – The CSV file to use when validating.val_images_root¶ (
Union
[str
,bytes
,PathLike
,None
]) – The root directory containing validation images.val_resolver¶ (
Optional
[Callable
[[Union
[str
,bytes
,PathLike
],Any
],Union
[str
,bytes
,PathLike
]]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.test_file¶ (
Optional
[str
]) – The CSV file to use when testing.test_images_root¶ (
Optional
[str
]) – The root directory containing test images.test_resolver¶ (
Optional
[Callable
[[Union
[str
,bytes
,PathLike
],Any
],Union
[str
,bytes
,PathLike
]]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.predict_file¶ (
Optional
[str
]) – The CSV file to use when predicting.predict_images_root¶ (
Optional
[str
]) – The root directory containing predict images.predict_resolver¶ (
Optional
[Callable
[[Union
[str
,bytes
,PathLike
],Any
],Union
[str
,bytes
,PathLike
]]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
The files can be in Comma Separated Values (CSV) format with either a
.csv
or.txt
extension.The file
train_data.csv
contains the following:images,targets image_1.png,cat image_2.png,dog image_3.png,cat
The file
predict_data.csv
contains the following:images predict_image_1.png predict_image_2.png predict_image_3.png
>>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_csv( ... "images", ... "targets", ... train_file="train_data.csv", ... train_images_root="train_folder", ... predict_file="predict_data.csv", ... predict_images_root="predict_folder", ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
Alternatively, the files can be in Tab Separated Values (TSV) format with a
.tsv
extension.The file
train_data.tsv
contains the following:images targets image_1.png cat image_2.png dog image_3.png cat
The file
predict_data.tsv
contains the following:images predict_image_1.png predict_image_2.png predict_image_3.png
>>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_csv( ... "images", ... "targets", ... train_file="train_data.tsv", ... train_images_root="train_folder", ... predict_file="predict_data.tsv", ... predict_images_root="predict_folder", ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_data_frame(input_field, target_fields=None, train_data_frame=None, train_images_root=None, train_resolver=None, val_data_frame=None, val_images_root=None, val_resolver=None, test_data_frame=None, test_images_root=None, test_resolver=None, predict_data_frame=None, predict_images_root=None, predict_resolver=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationDataFrameInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from pandas DataFrame objects containing image files and their corresponding targets.Input images will be extracted from the
input_field
in the DataFrame. The supported file extensions are:.jpg
,.jpeg
,.png
,.ppm
,.bmp
,.pgm
,.tif
,.tiff
,.webp
, and.npy
. The targets will be extracted from thetarget_fields
in the DataFrame and can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.- Parameters
input_field¶ (
str
) – The field (column name) in the DataFrames containing the image file paths.target_fields¶ (
Union
[str
,Sequence
[str
],None
]) – The field (column name) or list of fields in the DataFrames containing the targets.train_data_frame¶ (
Optional
[DataFrame
]) – The pandas DataFrame to use when training.train_images_root¶ (
Optional
[str
]) – The root directory containing train images.train_resolver¶ (
Optional
[Callable
[[str
,str
],str
]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.val_data_frame¶ (
Optional
[DataFrame
]) – The pandas DataFrame to use when validating.val_images_root¶ (
Optional
[str
]) – The root directory containing validation images.val_resolver¶ (
Optional
[Callable
[[str
,str
],str
]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.test_data_frame¶ (
Optional
[DataFrame
]) – The pandas DataFrame to use when testing.test_images_root¶ (
Optional
[str
]) – The root directory containing test images.test_resolver¶ (
Optional
[Callable
[[str
,str
],str
]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.predict_data_frame¶ (
Optional
[DataFrame
]) – The pandas DataFrame to use when predicting.predict_images_root¶ (
Optional
[str
]) – The root directory containing predict images.predict_resolver¶ (
Optional
[Callable
[[str
,str
],str
]]) – Optionally provide a function which converts an entry from theinput_field
into an image file path.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> from pandas import DataFrame >>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> train_data_frame = DataFrame.from_dict( ... { ... "images": ["image_1.png", "image_2.png", "image_3.png"], ... "targets": ["cat", "dog", "cat"], ... } ... ) >>> predict_data_frame = DataFrame.from_dict( ... { ... "images": ["predict_image_1.png", "predict_image_2.png", "predict_image_3.png"], ... } ... ) >>> datamodule = ImageClassificationData.from_data_frame( ... "images", ... "targets", ... train_data_frame=train_data_frame, ... train_images_root="train_folder", ... predict_data_frame=predict_data_frame, ... predict_images_root="predict_folder", ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_datasets(train_dataset=None, val_dataset=None, test_dataset=None, predict_dataset=None, input_cls=<class 'flash.core.data.data_module.DatasetInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Creates a
DataModule
object from the given datasets using theInput
of nameDATASETS
from the passed or constructedInputTransform
.- Parameters
train_dataset¶ (
Optional
[Dataset
]) – Dataset used during training.val_dataset¶ (
Optional
[Dataset
]) – Dataset used during validating.test_dataset¶ (
Optional
[Dataset
]) – Dataset used during testing.predict_dataset¶ (
Optional
[Dataset
]) – Dataset used during predicting.input_cls¶ (
Type
[Input
]) – Input class used to create the datasets.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Additional keyword arguments to be used when constructing the transform.data_module_kwargs¶ (
Any
) – Additional keyword arguments to use when constructing the DataModule.
- Return type
- Returns
The constructed data module.
Examples:
data_module = DataModule.from_datasets( train_dataset=train_dataset, )
- classmethod from_fiftyone(cls, train_dataset=None, val_dataset=None, test_dataset=None, predict_dataset=None, label_field='ground_truth', target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationFiftyOneInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from FiftyOneSampleCollection
objects.The supported file extensions are:
.jpg
,.jpeg
,.png
,.ppm
,.bmp
,.pgm
,.tif
,.tiff
,.webp
, and.npy
. The targets will be extracted from thelabel_field
in theSampleCollection
objects and can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.- Parameters
train_dataset¶ (
None
) – TheSampleCollection
to use when training.val_dataset¶ (
None
) – TheSampleCollection
to use when validating.test_dataset¶ (
None
) – TheSampleCollection
to use when testing.predict_dataset¶ (
None
) – TheSampleCollection
to use when predicting.label_field¶ (
str
) – The field in theSampleCollection
objects containing the targets.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ – Additional keyword arguments to provide to the
DataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> import fiftyone as fo >>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> train_dataset = fo.Dataset.from_images( ... ["image_1.png", "image_2.png", "image_3.png"] ... ) ... >>> samples = [train_dataset[filepath] for filepath in train_dataset.values("filepath")] >>> for sample, label in zip(samples, ["cat", "dog", "cat"]): ... sample["ground_truth"] = fo.Classification(label=label) ... sample.save() ... >>> predict_dataset = fo.Dataset.from_images( ... ["predict_image_1.png", "predict_image_2.png", "predict_image_3.png"] ... ) ... >>> datamodule = ImageClassificationData.from_fiftyone( ... train_dataset=train_dataset, ... predict_dataset=predict_dataset, ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_files(train_files=None, train_targets=None, val_files=None, val_targets=None, test_files=None, test_targets=None, predict_files=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationFilesInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from lists of files and corresponding lists of targets.The supported file extensions are:
.jpg
,.jpeg
,.png
,.ppm
,.bmp
,.pgm
,.tif
,.tiff
,.webp
, and.npy
. The targets can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.- Parameters
train_files¶ (
Optional
[Sequence
[str
]]) – The list of image files to use when training.train_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when training.val_files¶ (
Optional
[Sequence
[str
]]) – The list of image files to use when validating.val_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when validating.test_files¶ (
Optional
[Sequence
[str
]]) – The list of image files to use when testing.test_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when testing.predict_files¶ (
Optional
[Sequence
[str
]]) – The list of image files to use when predicting.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_files( ... train_files=["image_1.png", "image_2.png", "image_3.png"], ... train_targets=["cat", "dog", "cat"], ... predict_files=["predict_image_1.png", "predict_image_2.png", "predict_image_3.png"], ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_folders(train_folder=None, val_folder=None, test_folder=None, predict_folder=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationFolderInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from folders containing images.The supported file extensions are:
.jpg
,.jpeg
,.png
,.ppm
,.bmp
,.pgm
,.tif
,.tiff
,.webp
, and.npy
. For train, test, and validation data, the folders are expected to contain a sub-folder for each class. Here’s the required structure:train_folder ├── cat │ ├── image_1.png │ ├── image_3.png │ ... └── dog ├── image_2.png ...
For prediction, the folder is expected to contain the files for inference, like this:
predict_folder ├── predict_image_1.png ├── predict_image_2.png ├── predict_image_3.png ...
To learn how to customize the transforms applied for each stage, read our customizing transforms guide.
- Parameters
train_folder¶ (
Optional
[str
]) – The folder containing images to use when training.val_folder¶ (
Optional
[str
]) – The folder containing images to use when validating.test_folder¶ (
Optional
[str
]) – The folder containing images to use when testing.predict_folder¶ (
Optional
[str
]) – The folder containing images to use when predicting.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_folders( ... train_folder="train_folder", ... predict_folder="predict_folder", ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_images(train_images=None, train_targets=None, val_images=None, val_targets=None, test_images=None, test_targets=None, predict_images=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationImageInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from lists of PIL images and corresponding lists of targets.The targets can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.
- Parameters
train_images¶ (
Optional
[List
[object
]]) – The list of PIL images to use when training.train_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when training.val_images¶ (
Optional
[List
[object
]]) – The list of PIL images to use when validating.val_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when validating.test_images¶ (
Optional
[List
[object
]]) – The list of PIL images to use when testing.test_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when testing.predict_images¶ (
Optional
[List
[object
]]) – The list of PIL images to use when predicting.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> from PIL import Image >>> import numpy as np >>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_images( ... train_images=[ ... Image.fromarray(np.random.randint(0, 255, (64, 64, 3), dtype="uint8")), ... Image.fromarray(np.random.randint(0, 255, (64, 64, 3), dtype="uint8")), ... Image.fromarray(np.random.randint(0, 255, (64, 64, 3), dtype="uint8")), ... ], ... train_targets=["cat", "dog", "cat"], ... predict_images=[Image.fromarray(np.random.randint(0, 255, (64, 64, 3), dtype="uint8"))], ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_labelstudio(export_json=None, train_export_json=None, val_export_json=None, test_export_json=None, predict_export_json=None, data_folder=None, train_data_folder=None, val_data_folder=None, test_data_folder=None, predict_data_folder=None, input_cls=<class 'flash.core.integrations.labelstudio.input.LabelStudioImageClassificationInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, val_split=None, multi_label=False, **data_module_kwargs)[source]¶
Creates a
DataModule
object from the given export file and data directory using theInput
of nameFOLDERS
from the passed or constructedInputTransform
.- Parameters
export_json¶ (
Optional
[str
]) – path to label studio export filetrain_export_json¶ (
Optional
[str
]) – path to label studio export file for train set.(overrides export_json if specified)val_export_json¶ (
Optional
[str
]) – path to label studio export file for validationtest_export_json¶ (
Optional
[str
]) – path to label studio export file for testpredict_export_json¶ (
Optional
[str
]) – path to label studio export file for predictdata_folder¶ (
Optional
[str
]) – path to label studio data foldertrain_data_folder¶ (
Optional
[str
]) – path to label studio data folder for train data set.(overrides data_folder if specified)val_data_folder¶ (
Optional
[str
]) – path to label studio data folder for validation datatest_data_folder¶ (
Optional
[str
]) – path to label studio data folder for test datapredict_data_folder¶ (
Optional
[str
]) – path to label studio data folder for predict datainput_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.val_split¶ (
Optional
[float
]) – Theval_split
argument to pass to theDataModule
.multi_label¶ (
Optional
[bool
]) – Whether the labels are multi encodeddata_module_kwargs¶ (
Any
) – Additional keyword arguments to use when constructing the datamodule.
- Return type
- Returns
The constructed data module.
Examples:
data_module = DataModule.from_labelstudio( export_json='project.json', data_folder='label-studio/media/upload', val_split=0.8, )
- classmethod from_numpy(train_data=None, train_targets=None, val_data=None, val_targets=None, test_data=None, test_targets=None, predict_data=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationNumpyInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from numpy arrays (or lists of arrays) and corresponding lists of targets.The targets can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.
- Parameters
train_data¶ (
Optional
[Collection
[ndarray
]]) – The numpy array or list of arrays to use when training.train_targets¶ (
Optional
[Collection
[Any
]]) – The list of targets to use when training.val_data¶ (
Optional
[Collection
[ndarray
]]) – The numpy array or list of arrays to use when validating.val_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when validating.test_data¶ (
Optional
[Collection
[ndarray
]]) – The numpy array or list of arrays to use when testing.test_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when testing.predict_data¶ (
Optional
[Collection
[ndarray
]]) – The numpy array or list of arrays to use when predicting.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> import numpy as np >>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_numpy( ... train_data=[np.random.rand(3, 64, 64), np.random.rand(3, 64, 64), np.random.rand(3, 64, 64)], ... train_targets=["cat", "dog", "cat"], ... predict_data=[np.random.rand(3, 64, 64)], ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- classmethod from_tensors(train_data=None, train_targets=None, val_data=None, val_targets=None, test_data=None, test_targets=None, predict_data=None, target_formatter=None, input_cls=<class 'flash.image.classification.input.ImageClassificationTensorInput'>, transform=<class 'flash.image.classification.input_transform.ImageClassificationInputTransform'>, transform_kwargs=None, **data_module_kwargs)[source]¶
Load the
ImageClassificationData
from torch tensors (or lists of tensors) and corresponding lists of targets.The targets can be in any of our supported classification target formats. To learn how to customize the transforms applied for each stage, read our customizing transforms guide.
- Parameters
train_data¶ (
Optional
[Collection
[Tensor
]]) – The torch tensor or list of tensors to use when training.train_targets¶ (
Optional
[Collection
[Any
]]) – The list of targets to use when training.val_data¶ (
Optional
[Collection
[Tensor
]]) – The torch tensor or list of tensors to use when validating.val_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when validating.test_data¶ (
Optional
[Collection
[Tensor
]]) – The torch tensor or list of tensors to use when testing.test_targets¶ (
Optional
[Sequence
[Any
]]) – The list of targets to use when testing.predict_data¶ (
Optional
[Collection
[Tensor
]]) – The torch tensor or list of tensors to use when predicting.target_formatter¶ (
Optional
[TargetFormatter
]) – Optionally provide aTargetFormatter
to control how targets are handled. See Formatting Classification Targets for more details.input_cls¶ (
Type
[Input
]) – TheInput
type to use for loading the data.transform¶ (
TypeVar
(INPUT_TRANSFORM_TYPE
,Type
[flash.core.data.io.input_transform.InputTransform],Callable
,Tuple
[Union
[StrEnum
,str
],Dict
[str
,Any
]],Union
[StrEnum
,str
],None
)) – TheInputTransform
type to use.transform_kwargs¶ (
Optional
[Dict
]) – Dict of keyword arguments to be provided when instantiating the transforms.data_module_kwargs¶ (
Any
) – Additional keyword arguments to provide to theDataModule
constructor.
- Return type
- Returns
The constructed
ImageClassificationData
.
Examples
>>> import torch >>> from flash import Trainer >>> from flash.image import ImageClassifier, ImageClassificationData >>> datamodule = ImageClassificationData.from_tensors( ... train_data=[torch.rand(3, 64, 64), torch.rand(3, 64, 64), torch.rand(3, 64, 64)], ... train_targets=["cat", "dog", "cat"], ... predict_data=[torch.rand(3, 64, 64)], ... transform_kwargs=dict(image_size=(128, 128)), ... batch_size=2, ... ) >>> datamodule.num_classes 2 >>> datamodule.labels ['cat', 'dog'] >>> model = ImageClassifier(backbone="resnet18", num_classes=datamodule.num_classes) >>> trainer = Trainer(fast_dev_run=True) >>> trainer.fit(model, datamodule=datamodule) Training... >>> trainer.predict(model, datamodule=datamodule) Predicting...
- input_transform_cls¶
alias of
flash.image.classification.input_transform.ImageClassificationInputTransform